
6. 4
.

Formulation mathématique du second principe,
l'entropie S

6. 4 . 1 L'entropie S

· L'entropie S est une fonction d'état, dont la différentielle
est totale exacte :

dS = Se + SSint

Avec ggest la contribution des changesa
avec l'extérieur

et Sainto la production interne

d'entropie

·Ts température à la surface du système
fermé

-SQ

système fermé



· L'entropie estune différentielle totale exacte = son

calcul ne dépend pas du chemin et la variation des

Sur un cycle est nulle :

AS = Sas = Sp-SA etds = o
A

On port donc calculer AS avec le chemin qui nous convient le mieux.

· Unité : Energie = [k-1] = [Nmk -1)

· dS pour un systeme stationnaire : dS =0

& Sext = -Sainto

· dS pour un systeme à l'équilibre thermodynamique :
dS=0 Sext =o S est maximum

Saint =o

· dS pour un système isolé : sexto
&S= Spintzo



Aspour une transformation reversible / irréversible

Soit une transformation quasi-statique d'un état initial A

à un état final B à la temperature
T

.

De A-B :

dVA-B =SWAB + SQA-B t
B

d SA-B = SQAB + SSi
DeBA :

dUB-A = SWB-a + SQB-A
&SB-A=A +Si

Boucle A-B-A

nor principe : dU = 0 =c SWAB + SQAB = -SWBA-SOB-A
dS différentielle

: dS =0 => AABSSStotale exacte



On peut avoir deux cas :

① Sit = 0
=> SAB=-BASQABSOB-A
=> SWA-B = - SWB-A

La transformation inverse se fait avec-Wet-Q !

② Saint so
OnaBin=Si

30 Lo

=> SQAB F-SQB-A
= SWABF-SWB-A

La transformation A-B est irréversible. On pert
retourner à l'état initial pour le système ,mais les

échanges avec l'extérieur ne sont pas identiques
et inversés suivant le sens de la transformation.



Pour une transformation réversible : Saint= o

Pour une transformation irréversible : Ssintso

Pour qu'une transformation soit réversible , il
faut qu'elle soit quasi-statique (succession lente

d'états à l'équilibre thermodynamique) et que les
forces macroscopiques (internes et externes) impliquées
soient conservatives.

=> réversible = quasi-statique + non dissipatif



· Causes d'irréversibilité :

- Forces non conservatives
,
dissipatives :

* frottement
* fluides visqueux
* chocs inélastiques
*...

-

Système hors-equilibre thermodynamiques
,gradientde

* température
* densité
* pression
*...

· Nomenclature :
- transformation hors-équilibre = transformation irréversible
- transformation avec dS =o = transformation isentropique
Les transformations adiabatiques (SQ =0) et réversibles
(Ssint=o) sont un exemple de transformation isentropique.

quasi-statique + réversible + isentropique fadiabatique



6. h
.

2 Enoncé de Clausirs en terme d'entropie

Il est impossible d'avoir une transformation dont le seul

résultat est de transférer de l'énergie sour forme de

chaleur d'un corps à une température donnée à un

corps à une température plus élevée.

soit unSystème isoléaveares TSQ
T et Tf avec TosTf .

Impossible.

· Il peut yavoir un echange de ↑SQ
chaleur entre les 2 réservoirs⑮

system· du = 0 => SQSQf =0
car( isolé

système
= SQ-SQf

isole

· dS = Sjext + Igint = Saint 20
-
= (pas d'echange avec l'extérieur (

dS est une différentielle totale exacte
,
on choisit un

chemin réversible (=> Saint =0 pour calculer ds

entre les deux réservoirs (sous-systemes



· dS =+SQSQ
20

=> La source froide ne peut que recevoir de la chaleur
de la source chaude.

-4. 3 Enoncé de Kelvin en terme d'entropie

9) n'est pas possible de prélever une quantité de
chaleur d'un corps et la transformer entièrement

en travail.

Tc
· Au cours d'un cycle ↓Q ImpossibleAV = 0 = Q+W

M --W
=> W = -Q

AS =0 = Q + sint =o
T
C

= Q = -To Sint

=> W=sin => Wao
200 La machine thermique ne

fournit pas du travail mais
en utilise !



6.4
.
4 Variation d'entropie dans un cycle de Carnot

·Le cycle de Carnot
Pr

= dS = SQ

est réversible => Sgint-o

&T

· Calculons AS pour chaque
transformation :

2

V

ASA-B= = nRIn(I) ASD==Rin(

·S adiabatieet en

On avait vr que B= (()= In()
== In ()

*
Carnot

= nRIn() -nRIn() =0
· l'inégalité de Clausirs D+B =0

est vérifie

=> Le second principe est vérifié.



6. 4
.

5 Diagramme T-S

Comme l'entropie est une variable d'état
,
on peut choisir

de représenter l'état du système par TetS .

On peut exprimer les autres grandeurs en fonction de
Tets : p(T, s) , UCT, S) , UCT, S), H(T,, S) .. .

Tr Tr

e /pa

Pour une transformation réversible : dS= Qu=
Pour un cycle réversible : Aire dans le cycle = chaleur échangée

Q si sens horaire G

Rappel : Pour un diagramme p-V, l'aire sous une courbe

représente le travail échange .
Wo si sens anti-horaire &.
W= -pdV



Cycle réversible de Carnot :
Pr T1

* && .
D

Ty - po ·A

Réversible => dS = SQ
P si st

=si
>

T

Calcul graphique du rendement de Carnot :

&
Carnor=

B

Q = 9
*

Tds =1)dS = T+ (SB-SA)
A A

Qc=TdS =T = Tc(Sp -Sc) = Ta(SA -SB)

=> Rcarnot = 1 - E



6. 4.6 Point de vue microscopique, entropie statistique

· Soit un systeme dans un etat macroscopique donné

(donné par p,V,T, U , ... ) et à l'équilibre thermodynamique.

1) peut être dans les états microscopiques s (donnés

par la position et vitesse de chacune des particules) chacun

avec probabilité ps.

· Définition de l'entropie statistique :

Formule de
S =-REPIn(ps) Gibbs

k : constante de Boltzmann

ki = 1.38 .10237k
-1



· Formule de Boltzmann

Soit un système isolé à l'équilibre thermodynamique.
S est maximum et la probabilité ps pour chaque états
est identique !

Avec& états microscopiques possibles (chacun de ces
états microscopiques correspond au même état

macroscopique donné), on a alors :

Ps== ce

= S = -k[PsIn(ps)
=-kiz 1. In()
=-kis In (t)

Formule de
=> S = kp(n(r) Boltzmann

A l'équilibre thermodynamique
,
tous les états microscopiques

possibles d'un systeme isole sont quiprobables.



· Exemple : détente de Soule

Observation : Na
molécules

-

gazDwide
motecules

avec
état Initial état final

Nmolécules

Dans le cas de cette détente
,
il n'y a qu'un

état macroscopique final : N particules avec une

certaine énergie => p,
V
,
T

Il y a cependant une multitude d'etats microscopiques
différents qui correspondent à cet état macroscopique.

Exemple : les particules N128 etN52 seraient interverties
.



On vient de voir que tous les états microscopiques
possibles d'un systeme isole sont équiprobables !
Pourquoi est-ce qu'on voit cet état final et
non pas un autre état, par exemple où toutes les
molécules sont à gauche or à droite?

Faisons un per de statistique , avec per de particules
On s'intéresse à la distribution des particules dans
l'état final

.
On note "O" si la particule est dans l'enceinte

de garche et ""si elle est dans l'enceinte de droite,

particule1, particule
·Avec 2 particules , on peut avoir : (0,0

(0
,
1)
,
(1
,
0

(1
,
1)

On a sétats microscopiques possibles , 50% out une

distribution uniforme, 25% de chance d'avoir les

particules completement à garche or a droite.



· N = 3 particules 100 o

(001)(0 + 0)(100)

(011) (110)(101)

(111)

=> 8 états possibles (2N)

probabilité d'avoir toutes les particules à

garche or a droite : 1

· N= particules 1000 0
1000 1) (00 10) (0100 (1000)

(0011) (0101) (1001) (010)
(1100) (1010)

(0111) (1011) (1101) (1110)

(n111)

=> 16 états possibles (2N)

probabilité d'avoir toutes les particules à

garche or a droite : 116



· N particules : 2Nétats possibles

probabilité d'avoir toutes les particules à

garche or a droite:

Rappel . Nombre d'Avogadro : Na = 6 . 1033 atomes
=> Dans une situation réelle

,
N-Na et la probabilité

d'avoir toutes les molécules d'un seul côté de l'enceinte

est infiniment petite0

Exemple numérique : Soit 30 molécules et un système qui nous
permet de relancer l'expérience chaque
seconde

.
Il nousfaudrait 230-1

.
07 .109s

pour parcourir tous les états possibles. Un
seul d'entre eux correspond à celviou
les 30 molécules sont à gauche. Le test

aura duré plus de 34 ans.



6. 4 . 7 Résumé de ce qu'on a appris

· Premier principe : dU = SW + SQ

· Second principe : A
.
&S = Sext + Saint

avec Sext = SQ et Sainto
T

B. Enoncé de Clausivs

C
. Enoncé de Kelvin

D. Théorème de Carnot

E
. Entropie statistique : formule de Boltzmann

Toutes ces formulations do second principe
sont équivalentes !

· Transformation réversible: Ssint = o

Transformation irréversible : Spint >o



D
· La relation suivante est toujours vraie :

dV = SQ + SW

· Lorsque la transformation est réversible :
SQ =TdS

SW = -pdV

et on a dU = TdS-pdV

· La relation dV = TdS-pdV est valable

uniquement entre deux états d'équilibre
dans un cas général (réversible ou irréversible)
* cas reversible : dU = TdS-pdV à chague

instant

* cas irreversible : dV = TdS-pdV seulement valable

entre l'état initial et final

C'états d'équilibre)



6.5. Exemples de calcul d'entropie

6.5
.
1
.
Transformation d'un état A à B

But : Calculer AS pr . une transformation Pa
quasi-statique d'un gaz A
parfait d'un état initial A *

à un état final B. 1
différentielle totale exacte

· B
X

dS = on peut choisir le chemin
2
V

pour le calcul de dS.

Choisissons deux transformations réversibles : une isochore

de A à A et une isotherme de A à B .

A-A' : dV = SQ+ = nCumdT
-pdV =0
~

=> SQ = nCumdT

dS= = &S =n(un =m
Tcte

A-B : dV = SQ + SWo
SQ= pdV = nRTAVV

dS = SQ = &S =nR = InF
V



On trouve : ASA-B = nCumIn(I) +RIn()

6. 5
.

2. Calcul de l'entropie interne pour une transformation
irréver sible

A
Soit une transformation irréversible

d'un état A à un état B. Comment ↳calculer la variation interne

d'entropie sint ? >

&Sab=etint etAB
Mais on peut également calculer AS en choisissant un chemin
contenant des transformations réversibles :

dSAB = Se et ISAB=
B

S
On peut donc exprimer sint car ASAB = ASAB

=>Sint_BrévBett



Revenons à la détente de Toule :

Na
molécules

-
~ ↓motecules

gazDy
w

D
avec

& état Initial état final
Nmolecules

per principe : En considérant le systeme total
,
il n'y a pas

d'échange de chaleur avec l'extérieur et il n'y a
pas de travail effectué par le gaz lors de la détente (AV=d.

AV =W => ST=o

↑
car p= o

Par contre, en considérant les deux enceintes séparément,
durant la détente

,
le système n'est pas à l'équilibre

thermodynamique. Le n'est pas une transformation

quasi-statique. C'est une transformation adiabatique
(Q =0) irréversible

.



On ne peut pas la représenter dans un diagramme

d'etat (p-V
,
T-s, . . . (

Peut-on tout de même calculer As ?

Oui car dS est une différentielle totale exacte
,
on peut

choisir le chemin d'intégration .

· Pour la détente de Joule : &S=QSite
· Choisissons une expansion isotherme réversible qui
démarre du même état et arrive au même et at final

&

Na
molecules

-

gazDwide
motecules

avec
état initial i état final +Nmolécules



= dSgaz = Suit
=O gaz parfait

&gaz/P
perprincipe

dV =SW+ SQ= 0

= ASgaz = nRIn()
ASgaz = nRIn(2) <o

On a donc trouvé
que pour la détente de Joule d'un

gaz partait AS=int = nRIn() >o



6. 5 .3
. Liquétaction réversible

Supposons un réservoir thermique à T=0%

en contact avec de la glace à+0% La

glace fond entièrement en restant à la même

température T= 0%. Int
glace

Tf

& Sglace= Q0 pour laglace

ISglace=(=(SQ Dotton
S

* réservoir = -Ot

*Stot = ASglace + &S réservoir =0 ( processus réversible)



6. 5 . 4. Deux solides à des températures différentes en contact

T Tz #+ Ty

état initial état final

Soit 2 solides de capacité spécifique (v etCu
,
à des

températures Te et Tz en contact thermique. On néglige
les changements de volume dus à la température.

1. Que vaut Tf ?

2. Que vaut AS et sint ?

3. Montrer que sirt est maximale quand les 2 solides ont leurs

températures finales Ti = T'z=f.
1. On a un système isolé

.

AV = Q +w =0 et AV = AU +AUz
= Cu(T+-(1) + CuCTy -Tz) =0

=>> Tt (Cr +(vz) = CuTh +CraTz

=> Ty = CrTe +CrTz
G +22



T Tz #+ Ty

état initial état final

2. Système isolé = AS=ext sintsint
et 1502 = ASs + AS2

On calcule AS, et ASz le long d'un chemin réversible

allant de T; à Ty :

IS=
T1

AS2= Crln ()
=> girt = (In() +Cin()



T Tz #+ Ty

état initial état final
2

3. Ona 1U = Cr(Ti -ti) + (vz (T2 -Tz) =0

etgirt = (rIn([) + Cvln (E)
Astuce : utilisons les formes différentielles de 1U et sint en

considérant 10 et sint comme des fonctions de

deux variables SU(Th
,T'z) et

Sint (T1
,
T'z) :

Au =0 => d(DU(Th
,
T'2))=0 =

*

CrdTi +CrdT =0
②

max (sint) => d(sin(tit'2)) =0 =Cv +C
①= CrdT'n =-CvdT'

②= CAT-Cud
= Ti =T'z



6.6. Equilibre et potentiels thermodynamiques

En thermodynamique (tout comme en mécanique) ,
seuls les équilibres stables , ou meta-stables dans certaines
conditions

,
sont réalisables.

=>> Les processus naturels se font vers un

équilibre stable et jamais en sens inverse.

Rappel du premier chapitre :

Système stationnaire : système dont les variables

d'état ne dépendent pas
do temps

(x) =X =0



Système à l'équilibre thermodynamique :
Système stationnaire qui,si il est isolé de
tout échange avec l'extérieur, reste stationnaire,

L'évolution et l'équilibre d'un système thermodynamique
sont obtenus en faisant le bilan d'énergie (eprincipe
et le bilan d'entropie (zème principe) entre
les instants + et dt d'une transformation
infinitésimale.

Pour un système fermé :

dV = SW + SQ

dS=Q + SSint avec SSinzo



On verra que suivant
la situation

,
il est

judicieux de définir de nouvelles fonctions

thermodynamiques , appelées potentiels thermodynamiques
.

6.6. 1. Evolution et équilibre de differents systèmes
fermés

Système isolé :

du = 0

dS = SSint =o

L'évolution implique soit dS =o or dS30.

L'équilibre correspond à un maximum d'entropies
Si

équilibre
↓

-
S



Systeme à volume et entropie constants :

* les transformations peuvent être réversibles ou
irréversibles => on n'utilise pas dU

= TdS-pdV

pour décrire l'évolution du système .

On a dU = SQ +S
car dV=

dS= + SSint =o

= SSint =-0
= dV 0

Le système va évolver en diminuant son énergie
interne (dU =0). L'équilibre est caractérisé par

un minimum d'énergie interne : du = o puisque
SSint =o à l'équilibre .



Système à pression et entropie constante :

On a : dS = &Q + SSint = o

et dU= SQ + SW
= SQ-pdV

=> SSint = -SQ- dUpdV

En définissant l'enthalpie H= U + pV

= -0

=> dH10

Le système va évolver en diminuant son enthalpie
(dH =0). L'équilibre sera atteint lors que

H sera minimale
.



Système à température et volume constants

dV = SQ +S
=0

dS = Sint =o

=> SSint = dS - @ =- dUTdS = d(U-TS)T

En définissant l'énergie librF = U-TS

=_ 0

=> dFO

Le système va évolver en diminuant son énergie
libre (dF = 0). L'équilibre sera atteint lors que
F sera minimale.



Système à température et pression constantes

dU = SQ + SW

dS = @ + SSint =0

=> SQ = dV - Gw = dU + pdV = dV + d(pV)

=> SSint = TdS-SQ = -

dV +d(pV) -TdS =0
T

T

SSint = -d(U + pV-TS) =0
T

En définissant l'enthalpie libre G = U +pV-TS
=- 0

= dG 10

Le système va évolver en diminuant son enthalpie
libre (dG= 0). L'équilibre sera atteint lors que
6 sera minimale

.



L'évolution et équilibre d'un système

thermodynamique ouvert
,
ou d'un système

composé de différentes phases , sera traité dans

le chapitre 9.

On verra que le système
,
tout comme pour le cas

à température et pression constantes, va évaluer

en diminuant son enthalpie libre (dGo).
L'équilibre sera atteint lors que G sera minimale.
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